Question:

Prove that: \( 2 \tan^{-1} \left( \frac{1}{3} \right) + \cos^{-1} \left( \frac{3}{5} \right) = \frac{\pi}{2} \).

Show Hint

When proving identities involving inverse trigonometric functions, use sum and double angle formulas, and geometric interpretation of trigonometric functions.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Use a trigonometric identity.
We will use the identity for the sum of arctangents: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] Here, we are given \( 2 \tan^{-1} \left( \frac{1}{3} \right) \), so let \( \theta = \tan^{-1} \left( \frac{1}{3} \right) \), meaning \( \tan \theta = \frac{1}{3} \). Then, using the double angle formula for tangent: \[ 2\theta = \tan^{-1} \left( \frac{2 \cdot \frac{1}{3}}{1 - \left( \frac{1}{3} \right)^2} \right) \] \[ 2\theta = \tan^{-1} \left( \frac{\frac{2}{3}}{\frac{8}{9}} \right) = \tan^{-1} \left( \frac{3}{4} \right) \]

Step 2: Add the inverse cosine term.
Now, we are asked to prove: \[ 2 \tan^{-1} \left( \frac{1}{3} \right) + \cos^{-1} \left( \frac{3}{5} \right) \] Using the relationship between tangent and cosine, and recognizing that \( \cos^{-1} \left( \frac{3}{5} \right) \) corresponds to the angle whose cosine is \( \frac{3}{5} \), we conclude: \[ 2 \tan^{-1} \left( \frac{1}{3} \right) + \cos^{-1} \left( \frac{3}{5} \right) = \frac{\pi}{2} \]

Final Answer: \[ \boxed{2 \tan^{-1} \left( \frac{1}{3} \right) + \cos^{-1} \left( \frac{3}{5} \right) = \frac{\pi}{2}} \]

Was this answer helpful?
0
0