Question:

If $ | \vec{a} | = 3 $, $ | \vec{b} | = 2 $, then find } $ (3\vec{a} - 2\vec{b}) \cdot (3\vec{a} + 2\vec{b}) $.

Show Hint

Remember that when simplifying dot products involving vector operations, the distributive property is very useful. Be mindful of the squared magnitudes of the vectors when calculating the dot product of a vector with itself.
Updated On: Apr 28, 2025
  • \( 27 \)
  • \( 0 \)
  • \( 15 \)
  • \( 25 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given \( | \vec{a} | = 3 \) and \( | \vec{b} | = 2 \). We are asked to find: \[ (3\vec{a} - 2\vec{b}) \cdot (3\vec{a} + 2\vec{b}) \] We can expand this expression using the distributive property of the dot product: \[ (3\vec{a} - 2\vec{b}) \cdot (3\vec{a} + 2\vec{b}) = 9 \vec{a} \cdot \vec{a} + 6 \vec{a} \cdot \vec{b} - 6 \vec{b} \cdot \vec{a} - 4 \vec{b} \cdot \vec{b} \] Since \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \), this simplifies to: \[ 9 \vec{a} \cdot \vec{a} - 4 \vec{b} \cdot \vec{b} \] Now, use the magnitudes of the vectors: \[ \vec{a} \cdot \vec{a} = |\vec{a}|^2 = 9, \quad \vec{b} \cdot \vec{b} = |\vec{b}|^2 = 4 \]
Thus, the expression becomes: \[ 9 \times 9 - 4 \times 4 = 81 - 16 = 65 \]
Thus, the answer is \( 65 \).
Was this answer helpful?
0
0