We are given \( | \vec{a} | = 3 \) and \( | \vec{b} | = 2 \). We are asked to find:
\[
(3\vec{a} - 2\vec{b}) \cdot (3\vec{a} + 2\vec{b})
\]
We can expand this expression using the distributive property of the dot product:
\[
(3\vec{a} - 2\vec{b}) \cdot (3\vec{a} + 2\vec{b}) = 9 \vec{a} \cdot \vec{a} + 6 \vec{a} \cdot \vec{b} - 6 \vec{b} \cdot \vec{a} - 4 \vec{b} \cdot \vec{b}
\]
Since \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \), this simplifies to:
\[
9 \vec{a} \cdot \vec{a} - 4 \vec{b} \cdot \vec{b}
\]
Now, use the magnitudes of the vectors:
\[
\vec{a} \cdot \vec{a} = |\vec{a}|^2 = 9, \quad \vec{b} \cdot \vec{b} = |\vec{b}|^2 = 4
\]
Thus, the expression becomes:
\[
9 \times 9 - 4 \times 4 = 81 - 16 = 65
\]
Thus, the answer is \( 65 \).