Step 1: Compute \(2\vec{a} - 3\vec{b}\)
\[
\begin{aligned}
2\vec{a} &= 4\hat{i} - 10\hat{j} + 16\hat{k}
3\vec{b} &= 21\hat{i} - 15\hat{j} + 9\hat{k}
\Rightarrow 2\vec{a} - 3\vec{b} &= (4 - 21)\hat{i} + (-10 + 15)\hat{j} + (16 - 9)\hat{k}
&= -17\hat{i} + 5\hat{j} + 7\hat{k}
\end{aligned}
\]
Step 2: Compute \(4\vec{a} + \vec{b}\)
\[
4\vec{a} = 8\hat{i} - 20\hat{j} + 32\hat{k}
\Rightarrow 4\vec{a} + \vec{b} = (8 + 7)\hat{i} + (-20 - 5)\hat{j} + (32 + 3)\hat{k} = 15\hat{i} - 25\hat{j} + 35\hat{k}
\]
Step 3: Compute cross product
Let \(\vec{u} = -17\hat{i} + 5\hat{j} + 7\hat{k}\), \(\vec{v} = 15\hat{i} - 25\hat{j} + 35\hat{k}\).
Then,
\[
\vec{u} \times \vec{v} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
-17 & 5 & 7
15 & -25 & 35
\end{vmatrix}
\]
\[
= \hat{i}(5 \cdot 35 - 7 \cdot (-25)) - \hat{j}(-17 \cdot 35 - 7 \cdot 15) + \hat{k}(-17 \cdot (-25) - 5 \cdot 15)
\]
\[
= \hat{i}(175 + 175) - \hat{j}(-595 - 105) + \hat{k}(425 - 75)
\]
\[
= \hat{i}(350) + \hat{j}(700) + \hat{k}(350)
\]
So, \( x = 350, y = 700, z = 350 \Rightarrow x + y + z = 1400 \)