First, calculate the partial derivatives of \( u(x, y, z) \):
\[
u(x, y, z) = x^2y + y^2z + z^2x
\]
Step 1: Calculate \( \frac{\partial u}{\partial x} \).
\[
\frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left( x^2y + y^2z + z^2x \right) = 2xy + z^2
\]
Step 2: Calculate \( \frac{\partial u}{\partial y} \).
\[
\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left( x^2y + y^2z + z^2x \right) = x^2 + 2yz
\]
Step 3: Calculate \( \frac{\partial u}{\partial z} \).
\[
\frac{\partial u}{\partial z} = \frac{\partial}{\partial z} \left( x^2y + y^2z + z^2x \right) = y^2 + 2zx
\]
Now, evaluate these partial derivatives at the point \( (1, 1, 1) \):
\[
\frac{\partial u}{\partial x} \bigg|_{(1,1,1)} = 2(1)(1) + (1)^2 = 2 + 1 = 3
\]
\[
\frac{\partial u}{\partial y} \bigg|_{(1,1,1)} = (1)^2 + 2(1)(1) = 1 + 2 = 3
\]
\[
\frac{\partial u}{\partial z} \bigg|_{(1,1,1)} = (1)^2 + 2(1)(1) = 1 + 2 = 3
\]
Thus, the sum is:
\[
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 3 + 3 + 3 = 9
\]
% Correct Answer
Correct Answer:} \( 9 \)