We are given:
\[
u(n) = \int_0^{\frac{\pi}{2}} (1 + \sin t)^n \cdot \sin 2t \, dt
\]
Use the identity:
\[
\sin 2t = 2 \sin t \cos t
\Rightarrow u(n) = \int_0^{\frac{\pi}{2}} (1 + \sin t)^n \cdot 2 \sin t \cos t \, dt
\]
Let \( I = 2 \int_0^{\frac{\pi}{2}} (1 + \sin t)^n \sin t \cos t \, dt \)
Now, substitute \( x = \sin t \), so that:
\[
dx = \cos t \, dt \quad \text{and when } t = 0,\ x = 0;\ t = \frac{\pi}{2},\ x = 1
\]
Thus,
\[
I = 2 \int_0^1 (1 + x)^n x \, dx = 2 \int_0^1 (1 + x)^n x \, dx
\]
We now compute \( u(4) \Rightarrow n = 4 \):
So,
\[
u(4) = 2 \int_0^1 (1 + x)^4 x \, dx
\]
Expand:
\[
(1 + x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4
\Rightarrow (1 + x)^4 x = x + 4x^2 + 6x^3 + 4x^4 + x^5
\]
Now integrate term by term:
\[
\int_0^1 x \, dx = \frac{1}{2},\;
\int_0^1 4x^2 \, dx = \frac{4}{3},\;
\int_0^1 6x^3 \, dx = \frac{6}{4} = \frac{3}{2},\;
\int_0^1 4x^4 \, dx = \frac{4}{5},\;
\int_0^1 x^5 \, dx = \frac{1}{6}
\]
Add all:
\[
\frac{1}{2} + \frac{4}{3} + \frac{3}{2} + \frac{4}{5} + \frac{1}{6} = \frac{129}{30}
\Rightarrow u(4) = 2 \cdot \frac{129}{30} = \frac{129}{15}
\]
\[
\boxed{u(4) = \frac{129}{15}}
\]