Two functions $u(x,y)$ and $v(x,y)$ are functionally dependent if there exists a non-trivial relation $F(u,v)=0$. One way to find this relation is to manipulate the given expressions to eliminate $x$ and $y$. Given: $u = \frac{x+y}{x-y} \quad \ldots (1)$ $v = \frac{xy}{(x-y)^2} \quad \ldots (2)$
Step 1: Square the expression for $u$. Squaring equation (1), we get: $$ u^2 = \left(\frac{x+y}{x-y}\right)^2 = \frac{(x+y)^2}{(x-y)^2} $$
Step 2: Expand the numerator. Recall the identity $(a+b)^2 = (a-b)^2 + 4ab$. Applying this to the numerator $(x+y)^2$: $$ (x+y)^2 = (x-y)^2 + 4xy $$
Step 3: Substitute the expanded numerator into the expression for $u^2$. $$ u^2 = \frac{(x-y)^2 + 4xy}{(x-y)^2} $$
Step 4: Separate the terms in the numerator. $$ u^2 = \frac{(x-y)^2}{(x-y)^2} + \frac{4xy}{(x-y)^2} $$ $$ u^2 = 1 + \frac{4xy}{(x-y)^2} $$
Step 5: Substitute the expression for $v$ into the equation for $u^2$. From equation (2), we know that $v = \frac{xy}{(x-y)^2}$. Substitute $v$ into the equation for $u^2$: $$ u^2 = 1 + 4 \left( \frac{xy}{(x-y)^2} \right) $$ $$ u^2 = 1 + 4v $$ Thus, the relation between $u$ and $v$ is $u^2 = 1+4v$.