For the vectors to be perpendicular, their dot product must be zero:
\[
\vec{a} \cdot \vec{b} = (\cos \alpha)(\sin \alpha) + (\sin \alpha)(-\cos \alpha) + (\sin \frac{\alpha}{2})(\cos \frac{\alpha}{2})
\]
Simplifying,
\[
\vec{a} \cdot \vec{b} = \cos \alpha \sin \alpha - \cos \alpha \sin \alpha + \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}
\]
Using the identity \( \sin 2x = 2\sin x \cos x \), we get:
\[
\sin \frac{\alpha}{2} \cos \frac{\alpha}{2} = \frac{1}{2} \sin \alpha
\]
For the vectors to be perpendicular,
\[
\frac{1}{2} \sin \alpha = 0 \Rightarrow \sin \alpha = 0
\]
This gives \( \alpha = 0 \) or \( \pi \).