If two vectors $ \vec{A} $ and $ \vec{B} $ are mutually perpendicular, then the component of $ \vec{A} \cdot \vec{B} $ along the direction of $ \vec{A} + \vec{B} $ is
Show Hint
When resolving a vector along another, use the dot product formula: \(\text{Component} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\). If vectors are perpendicular, their dot product is zero.
We are given that \( \vec{A} \cdot \vec{B} \) is to be resolved along the direction of \( \vec{A} + \vec{B} \), and \( \vec{A} \perp \vec{B} \). That implies:
\[
\vec{A} \cdot \vec{B} = 0
\]
We compute the projection of \( \vec{A} - \vec{B} \) on the direction \( \vec{A} + \vec{B} \). The required component is:
\[
\text{Component} = \frac{(\vec{A} - \vec{B}) \cdot (\vec{A} + \vec{B})}{|\vec{A} + \vec{B}|}
\]
Using the identity:
\[
(\vec{A} - \vec{B}) \cdot (\vec{A} + \vec{B}) = |\vec{A}|^2 - |\vec{B}|^2
\]
and
\[
|\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2}
\]
(because \( \vec{A} \cdot \vec{B} = 0 \), since they are perpendicular)
So,
\[
\text{Component} = \frac{|\vec{A}|^2 - |\vec{B}|^2}{\sqrt{|\vec{A}|^2 + |\vec{B}|^2}}
\]