Let PQ and RS be two equal chords of a given circle and they are intersecting each other at point T.
Draw perpendiculars OV and OU on these chords.
In ∆OVT and ∆OUT,
OV = OU (Equal chords of a circle are equidistant from the centre)
∠OVT = ∠OUT (Each 90°)
OT = OT (Common)
∴ ∆OVT ≅ ∆OUT (RHS congruence rule)
∴ VT = UT (By CPCT) ... (1)
It is given that,
PQ = RS ... (2)
⇒ \(\frac{1}{2}\) PQ= \(\frac{1}{2}\) RS
⇒ PV = RU ... (3)
On adding equations (1) and (3), we obtain
PV + VT = RU + UT
⇒ PT = RT ... (4)
On subtracting equation (4) from equation (2), we obtain
PQ − PT = RS − RT
⇒ QT = ST ... (5)
Equations (4) and (5) indicate that the corresponding segments of chords PQ and RS are congruent to each other.
A driver of a car travelling at \(52\) \(km \;h^{–1}\) applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period.
Which part of the graph represents uniform motion of the car?