Let PQ and RS be two equal chords of a given circle and they are intersecting each other at point T.
Draw perpendiculars OV and OU on these chords.
In ∆OVT and ∆OUT,
OV = OU (Equal chords of a circle are equidistant from the centre)
∠OVT = ∠OUT (Each 90°)
OT = OT (Common)
∴ ∆OVT ≅ ∆OUT (RHS congruence rule)
∴ VT = UT (By CPCT) ... (1)
It is given that,
PQ = RS ... (2)
⇒ \(\frac{1}{2}\) PQ= \(\frac{1}{2}\) RS
⇒ PV = RU ... (3)
On adding equations (1) and (3), we obtain
PV + VT = RU + UT
⇒ PT = RT ... (4)
On subtracting equation (4) from equation (2), we obtain
PQ − PT = RS − RT
⇒ QT = ST ... (5)
Equations (4) and (5) indicate that the corresponding segments of chords PQ and RS are congruent to each other.
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)