If \( \theta \) is the angle between the tangents drawn from the point \( (-1, -1) \) to the circle \( x^2+y^2-4x-6y+c=0 \) and \( \cos\theta = -\frac{7}{25} \), then the radius of the circle is:
Show Hint
For angle between tangents problems, use the formula:
\[
\cos\theta = \frac{r}{\sqrt{(x_0 - h)^2 + (y_0 - k)^2}}
\]
This helps in directly computing the radius.
The given equation of the circle:
\[
x^2 + y^2 - 4x - 6y + c = 0
\]
Rewriting in standard form:
\[
(x-2)^2 + (y-3)^2 = r^2
\]
where \( r \) is the radius.
The formula for the angle between tangents from an external point \( (x_0, y_0) \) to a circle centered at \( (h, k) \) is:
\[
\cos\theta = \frac{r}{\sqrt{(x_0 - h)^2 + (y_0 - k)^2}}
\]
Given:
\[
\cos\theta = -\frac{7}{25}
\]
Solving for \( r \):
\[
r = \frac{7}{\sqrt{(2 + 1)^2 + (3 + 1)^2}}
\]
\[
= \frac{7}{\sqrt{9 + 16}}
\]
\[
= \frac{7}{5}
\]
Thus, \( r = 3 \).