The equation \( ax^2 + 2hxy + by^2 = 0 \) represents two lines through the origin. Let their slopes be \( m_1, m_2 \). The quadratic in \( m = \frac{y}{x} \) is:
\[
bm^2 + 2hm + a = 0.
\]
Sum and product of slopes:
\[
m_1 + m_2 = -\frac{2h}{b}, \quad m_1 m_2 = \frac{a}{b}.
\]
The angle \( \theta \) between lines satisfies:
\[
\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|.
\]
Compute \( m_1 - m_2 \):
\[
(m_1 - m_2)^2 = (m_1 + m_2)^2 - 4 m_1 m_2 = \frac{4h^2}{b^2} - 4 \cdot \frac{a}{b} = \frac{4(h^2 - ab)}{b^2}.
\]
\[
m_1 - m_2 = \frac{2 \sqrt{h^2 - ab}}{|b|}.
\]
\[
1 + m_1 m_2 = 1 + \frac{a}{b} = \frac{a + b}{b}.
\]
\[
\tan \theta = \left| \frac{\frac{2 \sqrt{h^2 - ab}}{|b|}}{\frac{a + b}{b}} \right| = \frac{2 \sqrt{h^2 - ab}}{|a + b|}.
\]
For acute \( \theta \), assume \( a + b>0 \), so:
\[
\tan \theta = \frac{2 \sqrt{h^2 - ab}}{a + b}.
\]