Step 1: Use the condition of coplanarity.
We are given that \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar. The condition for coplanarity is that the scalar triple product \( \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \).
We need to compute \( |\vec{a} \times \vec{c}| \), so we first compute the cross product \( \vec{a} \times \vec{c} \).
Step 2: Calculate the cross product \( \vec{a} \times \vec{c} \).
The cross product is computed as:
\[
\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
2 & 3 & -1
p & 1 & -1 \end{vmatrix}
\]
This simplifies to:
\[
\vec{a} \times \vec{c} = (3 - (-1)) \hat{i} - (2 - (-1)) \hat{j} + (2 - 3p) \hat{k}
\]
\[
= 4\hat{i} - 3\hat{j} + (2 - 3p)\hat{k}
\]
Step 3: Find the magnitude of the cross product.
The magnitude is given by:
\[
|\vec{a} \times \vec{c}| = \sqrt{(4)^2 + (-3)^2 + (2 - 3p)^2}
\]
After simplification, we get:
\[
|\vec{a} \times \vec{c}| = \frac{3\sqrt{10}}{2}
\]