Step 1: Recall regression slope formula
The slope $b_{yx}$ of regression of $y$ on $x$ is:
\[
b_{yx} = \frac{\text{Cov}(x,y)}{\text{Var}(x)}
\]
Step 2: Compute means
\[
\bar{x} = \frac{1+2+3}{3} = 2, \bar{y} = \frac{9+8+10}{3} = 9
\]
Step 3: Compute deviations and products
\[
(x, y): (1,9), (2,8), (3,10)
\]
Deviations from mean:
\[
(1-2, 9-9) = (-1,0), (2-2, 8-9) = (0,-1), (3-2, 10-9) = (1,1)
\]
Products:
\[
(-1)(0)=0, (0)(-1)=0, (1)(1)=1
\]
\[
\text{Cov}(x,y) = \frac{0+0+1}{3} = \frac{1}{3}
\]
Step 4: Compute variance of $x$
\[
(x- \bar{x})^2: (-1)^2=1, (0)^2=0, (1)^2=1
\]
\[
\text{Var}(x) = \frac{1+0+1}{3} = \frac{2}{3}
\]
Step 5: Slope calculation
\[
b_{yx} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} = 0.5
\]
Final Answer:
\[
\text{Slope of regression line} = 0.5
\]