Step 1: Understand the uncertainty principle
Heisenberg's uncertainty principle states:
\(\Delta x \cdot \Delta p \geq \frac{h}{4\pi}\)
where \(\Delta x\) is uncertainty in position,
\(\Delta p = m \Delta v\) is uncertainty in momentum,
and \(h = 6.626 \times 10^{-34} \, \text{Js}\) is Planck’s constant.
Step 2: Calculate uncertainty in momentum \(\Delta p\)
Given:
\(\Delta v = 0.1 \, \text{m/s}\),
\(m_e = 9.1 \times 10^{-31} \, \text{kg}\)
\(\Delta p = m_e \times \Delta v = 9.1 \times 10^{-31} \times 0.1 = 9.1 \times 10^{-32} \, \text{kg·m/s}\)
Step 3: Calculate uncertainty in position \(\Delta x\)
Using:
\(\Delta x \geq \frac{h}{4 \pi \Delta p}\)
Substitute values:
\(\Delta x \geq \frac{6.626 \times 10^{-34}}{4 \pi \times 9.1 \times 10^{-32}}\)
Calculate denominator:
\(4 \pi \times 9.1 \times 10^{-32} \approx 1.142 \times 10^{-30}\)
Then:
\(\Delta x \geq \frac{6.626 \times 10^{-34}}{1.142 \times 10^{-30}} = 5.8 \times 10^{-4} \, \text{m}\)
Step 4: Conclusion
The uncertainty in the position of the electron is approximately \(5.79 \times 10^{-4} \, \text{m}\).