the orthocentre of the triangle \(PQR\) is : \((2,-1)\)
Hence, the correct option is (B): \((2,-1)\)
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Considering Bohr’s atomic model for hydrogen atom :
(A) the energy of H atom in ground state is same as energy of He+ ion in its first excited state.
(B) the energy of H atom in ground state is same as that for Li++ ion in its second excited state.
(C) the energy of H atom in its ground state is same as that of He+ ion for its ground state.
(D) the energy of He+ ion in its first excited state is same as that for Li++ ion in its ground state.


A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is: 
Parabola is defined as the locus of points equidistant from a fixed point (called focus) and a fixed-line (called directrix).

=> MP2 = PS2
=> MP2 = PS2
So, (b + y)2 = (y - b)2 + x2