Given:
\(2x - y + 3 = 0, \quad 6x + 3y + 1 = 0, \quad ax + 2y - 2 = 0.\)
To not form a triangle, \(ax + 2y - 2 = 0\) must be concurrent or parallel with the other lines.
Solving for concurrent lines:
\(\frac{2}{6} = \frac{-1}{3} \implies a = \frac{4}{5}.\)
Similarly, for parallel lines:
\(a = \pm 4.\)
Calculating \(p\):
\(p = \left(\frac{4}{5}\right)^2 + 4^2 + 4^2 = 32.\)
The Correct answer is: 32
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: