Given:
\(2x - y + 3 = 0, \quad 6x + 3y + 1 = 0, \quad ax + 2y - 2 = 0.\)
To not form a triangle, \(ax + 2y - 2 = 0\) must be concurrent or parallel with the other lines.
Solving for concurrent lines:
\(\frac{2}{6} = \frac{-1}{3} \implies a = \frac{4}{5}.\)
Similarly, for parallel lines:
\(a = \pm 4.\)
Calculating \(p\):
\(p = \left(\frac{4}{5}\right)^2 + 4^2 + 4^2 = 32.\)
The Correct answer is: 32
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)