Given:
\(\frac{dy}{dx} = \frac{x + y - 2}{x - y}.\)
Substitute:
\(x = X + h, \quad y = Y + k.\)
Let:
\(h + k = 2, \quad h - k = 0 \implies h = k = 1.\)
So:
\(Y = vX, \quad \frac{dv}{dX} = \frac{1 + v^2}{1 - v}.\)
Integrating and applying the condition (2, 1):
\(\tan^{-1} \left(\frac{y - 1}{x - 1}\right) = \frac{1}{2} \log_e \left(1 + \left(\frac{y - 1}{x - 1}\right)^2\right) - \log_e |x - 1|.\)
From the equation:
\(\alpha = 1, \quad \beta = 2.\)
Calculating \(5\beta + \alpha\):
\(5\beta + \alpha = 5 \times 2 + 1 = 11.\)
Thus, the Correct Answer is 11.
Let me know if further clarification is needed!
The Correct answer is: 11
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: