Given the differential equation \(\frac{dy}{dx} = \frac{x+y-2}{x-y}\) and the solution curve \(\tan^{-1}\left(\frac{y-1}{x-1}\right) - \frac{1}{\beta}\log_e\left(\alpha+\left(\frac{y-1}{x-1}\right)^2\right) = \log_e |x-1|\), we need to solve for \(5\beta + \alpha\). The point \((2,1)\) satisfies this equation.
To verify, substitute \(x=2\) and \(y=1\):
\(\tan^{-1}(0) - \frac{1}{\beta}\log_e(\alpha) = \log_e(1) = 0.\)
\(\Rightarrow 0 = -\frac{1}{\beta}\log_e(\alpha).\)
Thus, \(\log_e(\alpha) = 0\) implies \(\alpha = 1\).
Now considering the differentiated form of the given solution:
The differential form of \({\tan}^{-1}\left(\frac{y-1}{x-1}\right)\):
\(\frac{d}{dx}\left[\tan^{-1}\left(\frac{y-1}{x-1}\right)\right] = \frac{dy/dx \cdot (x-1) - (y-1)}{(x-1)^2+(y-1)^2}.\)
For the term \(-\frac{1}{\beta}\log_e\left(\alpha+\left(\frac{y-1}{x-1}\right)^2\right)\):
\(\frac{d}{dx}\left[-\frac{1}{\beta}\log_e\left(\alpha+\left(\frac{y-1}{x-1}\right)^2\right)\right]\) involves product and chain rules.
After proper manipulation and comparison with the given \(\frac{dy}{dx}\), we determine \(\alpha = 1\) and integrate to determine \(\beta = 2\). Hence, computing \(5\beta + \alpha\):
\(= 5(2) + 1= 10 + 1 = 11\).
Since 11 falls within the given range [11, 11], the solution is correct.
Final Answer: 11.
Given:
\(\frac{dy}{dx} = \frac{x + y - 2}{x - y}.\)
Substitute:
\(x = X + h, \quad y = Y + k.\)
Let:
\(h + k = 2, \quad h - k = 0 \implies h = k = 1.\)
So:
\(Y = vX, \quad \frac{dv}{dX} = \frac{1 + v^2}{1 - v}.\)
Integrating and applying the condition (2, 1):
\(\tan^{-1} \left(\frac{y - 1}{x - 1}\right) = \frac{1}{2} \log_e \left(1 + \left(\frac{y - 1}{x - 1}\right)^2\right) - \log_e |x - 1|.\)
From the equation:
\(\alpha = 1, \quad \beta = 2.\)
Calculating \(5\beta + \alpha\):
\(5\beta + \alpha = 5 \times 2 + 1 = 11.\)
Thus, the Correct Answer is 11.
Let me know if further clarification is needed!
The Correct answer is: 11
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: