If the slope of the tangent on a curve at any point \((x, y)\) is equal to
\[
\frac{y^2 - x^2}{2xy}
\]
then the equation of the normal at the point \(\left(1, \frac{\sqrt{3}}{2}\right)\) is
Show Hint
For normals, use the negative reciprocal of the tangent's slope and apply the point-slope form.
Given the slope of the tangent at any point is:
\[
m = \frac{y^2 - x^2}{2xy}
\]
At \((1, \frac{\sqrt{3}}{2})\), substitute:
\[
m = \frac{\left(\frac{\sqrt{3}}{2}\right)^2 - 1^2}{2 \cdot 1 \cdot \frac{\sqrt{3}}{2}} = \frac{\frac{3}{4} - 1}{\sqrt{3}} = \frac{-\frac{1}{4}}{\sqrt{3}} = -\frac{1}{4\sqrt{3}}
\]
So the slope of the tangent is \(-\frac{1}{4\sqrt{3}}\)
The slope of the normal is the negative reciprocal:
\[
m_n = 4\sqrt{3}
\]
Using point-slope form for the line:
\[
y - \frac{\sqrt{3}}{2} = 4\sqrt{3}(x - 1)
\Rightarrow y = 4\sqrt{3}x - 4\sqrt{3} + \frac{\sqrt{3}}{2}
= 4\sqrt{3}x - \frac{7\sqrt{3}}{2}
\]
Multiply both sides by 2:
\[
2y = 8\sqrt{3}x - 7\sqrt{3} \Rightarrow 8\sqrt{3}x - 2y = 7\sqrt{3}
\Rightarrow \sqrt{3}x + y = \sqrt{3}
\]