To solve the problem, we need to determine the value of \(1 + 2\frac{c}{a}\) given that the roots of the quadratic equation \(ax^2 + bx + c = 0\) are \(\sin \alpha\) and \(\cos \alpha\).
1. Using Vieta's Formulas:
For a quadratic equation \(ax^2 + bx + c = 0\) with roots \(\sin \alpha\) and \(\cos \alpha\), Vieta's formulas tell us:
\[
\sin \alpha + \cos \alpha = -\frac{b}{a}
\]
\[
\sin \alpha \cdot \cos \alpha = \frac{c}{a}
\]
2. Expressing \(\sin \alpha + \cos \alpha\) and \(\sin \alpha \cdot \cos \alpha\):
We know from trigonometric identities that:
\[
(\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha
\]
Since \(\sin^2 \alpha + \cos^2 \alpha = 1\), we can rewrite this as:
\[
(\sin \alpha + \cos \alpha)^2 = 1 + 2 \sin \alpha \cos \alpha
\]
Substituting \(\sin \alpha + \cos \alpha = -\frac{b}{a}\) and \(\sin \alpha \cdot \cos \alpha = \frac{c}{a}\), we get:
\[
\left(-\frac{b}{a}\right)^2 = 1 + 2 \cdot \frac{c}{a}
\]
\[
\frac{b^2}{a^2} = 1 + 2 \cdot \frac{c}{a}
\]
3. Solving for \(1 + 2 \frac{c}{a}\):
From the equation above, we directly see that:
\[
1 + 2 \cdot \frac{c}{a} = \frac{b^2}{a^2}
\]
Final Answer:
The value of \(1 + 2 \frac{c}{a}\) is \({\frac{b^2}{a^2}}\).