To solve the problem, we need to determine the value of \(1 + 2\frac{c}{a}\) given that the roots of the quadratic equation \(ax^2 + bx + c = 0\) are \(\sin \alpha\) and \(\cos \alpha\).
1. Using Vieta's Formulas:
For a quadratic equation \(ax^2 + bx + c = 0\) with roots \(\sin \alpha\) and \(\cos \alpha\), Vieta's formulas tell us:
\[
\sin \alpha + \cos \alpha = -\frac{b}{a}
\]
\[
\sin \alpha \cdot \cos \alpha = \frac{c}{a}
\]
2. Expressing \(\sin \alpha + \cos \alpha\) and \(\sin \alpha \cdot \cos \alpha\):
We know from trigonometric identities that:
\[
(\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha
\]
Since \(\sin^2 \alpha + \cos^2 \alpha = 1\), we can rewrite this as:
\[
(\sin \alpha + \cos \alpha)^2 = 1 + 2 \sin \alpha \cos \alpha
\]
Substituting \(\sin \alpha + \cos \alpha = -\frac{b}{a}\) and \(\sin \alpha \cdot \cos \alpha = \frac{c}{a}\), we get:
\[
\left(-\frac{b}{a}\right)^2 = 1 + 2 \cdot \frac{c}{a}
\]
\[
\frac{b^2}{a^2} = 1 + 2 \cdot \frac{c}{a}
\]
3. Solving for \(1 + 2 \frac{c}{a}\):
From the equation above, we directly see that:
\[
1 + 2 \cdot \frac{c}{a} = \frac{b^2}{a^2}
\]
Final Answer:
The value of \(1 + 2 \frac{c}{a}\) is \({\frac{b^2}{a^2}}\).
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then: