Let the roots of the cubic equation \( 16x^3 - 44x^2 + 36x - 9 = 0 \) be \( \alpha, \beta, \gamma \).
Since the roots are in harmonic progression, their reciprocals \( \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma} \) are in arithmetic progression.
Let \( \frac{1}{\alpha} = a - d, \frac{1}{\beta} = a, \frac{1}{\gamma} = a + d \).
Then \( \alpha = \frac{1}{a - d}, \beta = \frac{1}{a}, \gamma = \frac{1}{a + d} \).
From the given equation, the sum of the roots is:
$$ \alpha + \beta + \gamma = -\frac{-44}{16} = \frac{44}{16} = \frac{11}{4} $$
The sum of the roots taken two at a time is:
$$ \alpha \beta + \beta \gamma + \gamma \alpha = \frac{36}{16} = \frac{9}{4} $$
The product of the roots is:
$$ \alpha \beta \gamma = -\frac{-9}{16} = \frac{9}{16} $$
From the product of the roots:
$$ \frac{1}{a - d} \cdot \frac{1}{a} \cdot \frac{1}{a + d} = \frac{9}{16} $$
$$ \frac{1}{a(a^2 - d^2)} = \frac{9}{16} $$
$$ a(a^2 - d^2) = \frac{16}{9} \quad \cdots (1) $$
From the sum of the roots:
$$ \frac{1}{a - d} + \frac{1}{a} + \frac{1}{a + d} = \frac{a(a + d) + (a - d)(a + d) + a(a - d)}{a(a - d)(a + d)} = \frac{a^2 + ad + a^2 - d^2 + a^2 - ad}{a(a^2 - d^2)} = \frac{3a^2 - d^2}{a(a^2 - d^2)} = \frac{11}{4} $$
$$ 4(3a^2 - d^2) = 11 a(a^2 - d^2) \quad \cdots (2) $$
We can also use the fact that if \( \beta \) is the middle root, then \( 2\beta = \alpha + \gamma \) for an arithmetic progression of reciprocals.
So, \( 2 \cdot \frac{1}{a} = \frac{1}{a - d} + \frac{1}{a + d} = \frac{a + d + a - d}{(a - d)(a + d)} = \frac{2a}{a^2 - d^2} \)
$$ \frac{2}{a} = \frac{2a}{a^2 - d^2} $$
$$ a^2 - d^2 = a^2 \implies d^2 = 0 \implies d = 0 $$
This would mean all roots are equal, which is not the case.
There must be a mistake in this assumption for HP.
For HP, \( \frac{2}{\beta} = \frac{1}{\alpha} + \frac{1}{\gamma} \).
This leads to \( \beta = \frac{2\alpha \gamma}{\alpha + \gamma} \).
Let's try a rational root test.
Possible rational roots are \( \pm \frac{1, 3, 9}{1, 2, 4, 8, 16} \).
If \( x = \frac{3}{2} \), \( 16(\frac{27}{8}) - 44(\frac{9}{4}) + 36(\frac{3}{2}) - 9 = 54 - 99 + 54 - 9 = 108 - 108 = 0 \).
So, \( x = \frac{3}{2} \) is a root.
Let the roots be \( \frac{1}{a - d}, \frac{1}{a}, \frac{1}{a + d} \).
One root is \( \frac{3}{2} \), so \( a = \frac{2}{3} \).
Product of roots: \( \frac{1}{a(a^2 - d^2)} = \frac{9}{16} \implies \frac{1}{\frac{2}{3}(\frac{4}{9} - d^2)} = \frac{9}{16} \)
\( \frac{3}{2(\frac{4}{9} - d^2)} = \frac{9}{16} \implies 48 = 18(\frac{4}{9} - d^2) = 8 - 18d^2 \)
\( 40 = -18d^2 \), which gives \( d^2 \) negative, impossible for real roots.
Let's use the property that if roots are in HP, the middle root is related to the sum and product.
If \( \beta \) is the middle root, \( \beta = \frac{3}{2} \).
\( \frac{1}{\alpha}, \frac{2}{3}, \frac{1}{\gamma} \) are in AP.
\( \frac{2}{3} - \frac{1}{\alpha} = \frac{1}{\gamma} - \frac{2}{3} \implies \frac{4}{3} = \frac{1}{\alpha} + \frac{1}{\gamma} = \frac{\alpha + \gamma}{\alpha \gamma} \).
Sum of roots \( \alpha + \beta + \gamma = \alpha + \frac{3}{2} + \gamma = \frac{11}{4} \implies \alpha + \gamma = \frac{11}{4} - \frac{6}{4} = \frac{5}{4} \).
Product of roots \( \alpha \cdot \frac{3}{2} \cdot \gamma = \frac{9}{16} \implies \alpha \gamma = \frac{9}{16} \cdot \frac{2}{3} = \frac{3}{8} \).
\( \frac{4}{3} = \frac{5/4}{3/8} = \frac{5}{4} \cdot \frac{8}{3} = \frac{10}{3} \), which is false.
There must be a simpler way.
If roots are \( \frac{1}{a-d}, \frac{1}{a}, \frac{1}{a+d} \).
Middle root \( \beta = \frac{1}{a} \).
\( 16(\frac{1}{a})^3 - 44(\frac{1}{a})^2 + 36(\frac{1}{a}) - 9 = 0 \).
\( 16 - 44a + 36a^2 - 9a^3 = 0 \implies 9a^3 - 36a^2 + 44a - 16 = 0 \).
If \( a = \frac{2}{3} \), \( 9(\frac{8}{27}) - 36(\frac{4}{9}) + 44(\frac{2}{3}) - 16 = \frac{8}{3} - 16 + \frac{88}{3} - 16 = \frac{96}{3} - 32 = 32 - 32 = 0 \).
So \( a = \frac{2}{3} \), middle root \( \beta = \frac{3}{2} \).