In an electromagnetic wave, the ratio of electric field intensity (E) to magnetic field intensity (H) in a medium is given by:
$\frac{E}{H} = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{\mu_r \mu_0}{\epsilon_r \epsilon_0}} = \sqrt{\frac{\mu_0}{\epsilon_0}} \sqrt{\frac{\mu_r}{\epsilon_r}}$
Given that $\sqrt{\frac{\mu_0}{\epsilon_0}} = 120\pi$ and $\frac{\mu_r}{\epsilon_r} = \frac{1}{4}$:
$\frac{E}{H} = 120\pi \sqrt{\frac{1}{4}} = 60\pi$
Thus, the ratio of E to H is 60π : 1.
The output (Y) of the given logic gate is similar to the output of an/a :
A | B | Y |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |
List I (Spectral Lines of Hydrogen for transitions from) | List II (Wavelength (nm)) | ||
A. | n2 = 3 to n1 = 2 | I. | 410.2 |
B. | n2 = 4 to n1 = 2 | II. | 434.1 |
C. | n2 = 5 to n1 = 2 | III. | 656.3 |
D. | n2 = 6 to n1 = 2 | IV. | 486.1 |