Let \( P(X = 1) = \frac{k}{2}, \ P(X = 2) = \frac{k}{3}, \ P(X = 3) = k, \ P(X = 4) = \frac{k}{5} \)
Sum of probabilities:
\[
\frac{k}{2} + \frac{k}{3} + k + \frac{k}{5} = k \left( \frac{1}{2} + \frac{1}{3} + 1 + \frac{1}{5} \right) = k \cdot \frac{61}{30}
\]
Set total probability to 1:
\[
k \cdot \frac{61}{30} = 1 \Rightarrow k = \frac{30}{61}
\]
Now compute mean \( E(X) = \sum x_i P(x_i) \):
\[
E(X) = 1 \cdot \frac{30}{61 \cdot 2} + 2 \cdot \frac{30}{61 \cdot 3} + 3 \cdot \frac{30}{61} + 4 \cdot \frac{30}{61 \cdot 5}
\]
\[
= \frac{30}{61} \left( \frac{1}{2} + \frac{4}{3} + 3 + \frac{4}{5} \right) = \frac{30}{61} \cdot \left( \frac{15 + 40 + 180 + 24}{30} \right) = \frac{30}{61} \cdot \frac{149}{30} = \frac{149}{61}
\]