Given: A right-circular cylinder with:
Step 1: Formula for Volume of a Cylinder
\[ V = \pi r^2 h \]
Step 2: Compute the New Volume
\[ V' = \pi \left(\frac{r}{2}\right)^2 h \] \[ V' = \pi \frac{r^2}{4} h = \frac{1}{4} \pi r^2 h \]
Step 3: Find the Ratio
\[ \frac{V'}{V} = \frac{\frac{1}{4} \pi r^2 h}{\pi r^2 h} = \frac{1}{4} \]
Final Answer: 1:4
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: