To solve the problem, we need to calculate the volume and total surface area of a sphere with radius \( r = 3.5 \, \text{cm} \), using \( \pi = \frac{22}{7} \).
1. Formula for Volume of a Sphere:
The volume of a sphere is given by:
\( V = \frac{4}{3} \pi r^3 \)
2. Substituting the Values:
\( r = 3.5 = \frac{7}{2} \)
\( V = \frac{4}{3} \times \frac{22}{7} \times \left( \frac{7}{2} \right)^3 \)
\( = \frac{4}{3} \times \frac{22}{7} \times \frac{343}{8} \)
3. Simplifying the Volume:
\( V = \frac{4 \times 22 \times 343}{3 \times 7 \times 8} \)
\( = \frac{30184}{168} = \frac{539}{3} \, \text{cm}^3 \)
4. Formula for Surface Area of a Sphere:
Surface Area \( A = 4 \pi r^2 \)
5. Substituting the Values:
\( A = 4 \times \frac{22}{7} \times \left( \frac{7}{2} \right)^2 \)
\( = 4 \times \frac{22}{7} \times \frac{49}{4} \)
\( = \frac{22 \times 49}{7} = 154 \, \text{cm}^2 \)
Final Answer:
The volume is \( \frac{539}{3} \, \text{cm}^3 \) and the surface area is \( 154 \, \text{cm}^2 \).