Step 1: Impose exactness for $f(x)=1$.
\[
\int_{-1}^{1} 1\,dx = 2
\Rightarrow
\frac{1}{9}(c_1 + c_2 + c_3)=2
\;\Rightarrow\; c_1+c_2+c_3=18.
\]
(This relation is true but not listed among the options; keep it for checking.)
Step 2: Impose exactness for $f(x)=x$.
\[
\int_{-1}^{1} x\,dx = 0
\Rightarrow
\frac{1}{9}\!\left(-c_1 + \frac{c_2}{2} + c_3\right)=0
\;\Rightarrow\; -c_1 + \frac{c_2}{2} + c_3 = 0.
\]
Step 3: Impose exactness for $f(x)=x^2$.
\[
\int_{-1}^{1} x^2\,dx = \left[\frac{x^3}{3}\right]_{-1}^{1} = \frac{2}{3}.
\]
RHS gives
\[
\frac{1}{9}\!\left(c_1 + \frac{c_2}{4} + c_3\right)=\frac{2}{3}
\;\Rightarrow\;
c_1 + \frac{c_2}{4} + c_3 = 6.
\]
This matches option (A). (The other listed equations are inconsistent with the exactness conditions.)
Final Answer:
\[
\boxed{\,c_1 + \dfrac{c_2}{4} + c_3 = 6\,}
\]