Step 1: Define the integers.
Let the smaller integer be \( x \). Then the next consecutive integer is \( x + 1 \).
Step 2: Write the product condition.
The product of the two integers is:
\[ x(x + 1) = 306. \]
Expand:
\[ x^2 + x = 306. \]
Rearrange into standard quadratic form:
\[ x^2 + x - 306 = 0. \]
Final Answer: The quadratic representation is \( \mathbf{x^2 + x - 306 = 0} \), which corresponds to option \( \mathbf{(1)} \).
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :