For $f(x) = Ke^{-3x}$ to be a PDF for $0<x<\infty$: $\int_{0}^{\infty} Ke^{-3x} dx = 1$.
$K \left[ \frac{e^{-3x}}{-3} \right]_{0}^{\infty} = 1$.
$K \left( \lim_{x \to \infty} \frac{e^{-3x}}{-3} - \frac{e^{0}}{-3} \right) = 1$.
$K \left( 0 - (-\frac{1}{3}) \right) = 1 \Rightarrow K \left(\frac{1}{3}\right) = 1 \Rightarrow K=3$.
The equation becomes $\frac{P^2+1}{P} = \frac{3}{\sqrt{2}}$.
$P + \frac{1}{P} = \frac{3}{\sqrt{2}}$.
Multiply by $\sqrt{2}P$: $\sqrt{2}(P^2+1) = 3P $
$\Rightarrow \sqrt{2}P^2 - 3P + \sqrt{2} = 0$.
Using the quadratic formula $P = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$: $P = \frac{3 \pm \sqrt{(-3)^2 - 4(\sqrt{2})(\sqrt{2})}}{2\sqrt{2}}$ $P = \frac{3\pm \sqrt{9 - 8}}{2\sqrt{2}} = \frac{3 \pm \sqrt{1}}{2\sqrt{2}} = \frac{3 \pm 1}{2\sqrt{2}}$.
The solutions are $P_1 = \frac{3+1}{2\sqrt{2}} = \frac{4}{2\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$.
And $P_2 = \frac{3-1}{2\sqrt{2}} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$.
Option (a) $\frac{1}{\sqrt{2}}$ is one of these solutions.
\[ \boxed{\frac{1}{\sqrt{2}}} \]