Step 1: Compressibility Definition
Compressibility \( \beta \) is defined as:
\[
\beta = -\frac{\Delta V / V}{\Delta P}
\]
where:
- \( \Delta V / V \) = Percentage volume change = \( 0.25% = 0.0025 \),
- \( \Delta P = 250 - 200 = 50 \) kPa = \( 50 \times 10^3 \) Pa.
Step 2: Calculating \( \beta \)
\[
\beta = \frac{0.0025}{50 \times 10^3}
\]
\[
= \frac{2.5 \times 10^{-3}}{50 \times 10^3}
\]
\[
= 2 \times 10^{-7} \text{ m}^2 \text{N}^{-1}
\]
Conclusion
Thus, the correct answer is:
\[
2 \times 10^{-7} \text{ m}^2 \text{N}^{-1}
\]