Step 1: Parametric Equations of the Line
The given line equation is: \[ \overrightarrow{r} = \hat{i} + 3\hat{j} + 4\hat{k} + \lambda(2\hat{i} - \hat{j}) \] This can be rewritten as: \[ x = 1 + 2\lambda, \quad y = 3 - \lambda, \quad z = 4 \]
Step 2: Use the Given Point P(x,1,4)
Since the point \( P(x,1,4) \) lies on the line, we substitute \( y = 1 \) into the equation: \[ 1 = 3 - \lambda \]
Step 3: Solve for \( \lambda \)
\[ \lambda = 3 - 1 = 2 \]
Step 4: Find \( x \)
Substituting \( \lambda = 2 \) into the equation for \( x \): \[ x = 1 + 2(2) = 1 + 4 = 5 \]
Final Answer: \( 5 \).
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |