Step 1: Parametric Equations of the Line
The given line equation is: \[ \overrightarrow{r} = \hat{i} + 3\hat{j} + 4\hat{k} + \lambda(2\hat{i} - \hat{j}) \] This can be rewritten as: \[ x = 1 + 2\lambda, \quad y = 3 - \lambda, \quad z = 4 \]
Step 2: Use the Given Point P(x,1,4)
Since the point \( P(x,1,4) \) lies on the line, we substitute \( y = 1 \) into the equation: \[ 1 = 3 - \lambda \]
Step 3: Solve for \( \lambda \)
\[ \lambda = 3 - 1 = 2 \]
Step 4: Find \( x \)
Substituting \( \lambda = 2 \) into the equation for \( x \): \[ x = 1 + 2(2) = 1 + 4 = 5 \]
Final Answer: \( 5 \).
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}