Step 1: Let the breadth be \(x\) m.
Then, the length = \(2x\) m (given).
Step 2: Write the formula for perimeter.
\[ \text{Perimeter} = 2(l + b) \] Substitute: \[ 120 = 2(2x + x) \Rightarrow 120 = 6x \Rightarrow x = 20 \] Step 3: Find the length.
\[ l = 2x = 2 \times 20 = 40 \] Step 4: Verify using the area condition.
\[ \text{Area} = l \times b = 40 \times 20 = 800 \, \text{m}^2 \] The condition is satisfied.
Step 5: Conclusion.
Hence, the length = 40 m and breadth = 20 m.