9
Step 1: Find the slope of the tangent at the point \((2, -1)\).
- The given ellipse equation is: \[ x^2 + 4y^2 = 8 \] - Differentiate both sides implicitly with respect to \(x\): \[ 2x + 8y \frac{dy}{dx} = 0 \] \[ \frac{dy}{dx} = -\frac{x}{4y} \] - Substitute the coordinates \((2, -1)\) into the equation: \[ \frac{dy}{dx} = -\frac{2}{4(-1)} = \frac{1}{2} \]
Step 2: Find the slope of the normal.
- The slope of the normal is the negative reciprocal of the slope of the tangent: \[ \text{slope of normal} = -\frac{1}{\frac{1}{2}} = -2 \]
Step 3: Find the equation of the normal.
- The normal passes through the point \((2, -1)\) and has a slope of \(-2\). Using the point-slope form of the equation of a line: \[ y - (-1) = -2(x - 2) \] \[ y + 1 = -2(x - 2) \] \[ y + 1 = -2x + 4 \] \[ y = -2x + 3 \]
Step 4: Substitute the equation of the normal into the ellipse equation.
- The equation of the ellipse is: \[ x^2 + 4y^2 = 8 \] - Substitute \(y = -2x + 3\) into this equation: \[ x^2 + 4(-2x + 3)^2 = 8 \] - Expand \((-2x + 3)^2\): \[ x^2 + 4(4x^2 - 12x + 9) = 8 \] \[ x^2 + 16x^2 - 48x + 36 = 8 \] \[ 17x^2 - 48x + 36 = 8 \] \[ 17x^2 - 48x + 28 = 0 \]
Step 5: Solve the quadratic equation.
- Solve \(17x^2 - 48x + 28 = 0\) using the quadratic formula: \[ x = \frac{-(-48) \pm \sqrt{(-48)^2 - 4(17)(28)}}{2(17)} \] \[ x = \frac{48 \pm \sqrt{2304 - 1904}}{34} \] \[ x = \frac{48 \pm \sqrt{400}}{34} \] \[ x = \frac{48 \pm 20}{34} \] - This gives two solutions for \(x\): \[ x = \frac{48 + 20}{34} = \frac{68}{34} = 2 \quad \text{or} \quad x = \frac{48 - 20}{34} = \frac{28}{34} = \frac{14}{17} \]
Step 6: Find the corresponding \(y\)-coordinates.
- For \(x = 2\), \(y = -2(2) + 3 = -4 + 3 = -1\), which corresponds to the original point \((2, -1)\). - For \(x = \frac{14}{17}\), substitute into \(y = -2x + 3\): \[ y = -2\left(\frac{14}{17}\right) + 3 = -\frac{28}{17} + \frac{51}{17} = \frac{23}{17} \]
Step 7: Find \(a\) and calculate \(17a\).
- The new point of intersection is \(\left(\frac{14}{17}, \frac{23}{17}\right)\), so \(a = \frac{14}{17}\). - Calculate \(17a\): \[ 17a = 17 \times \frac{14}{17} = 14 \] Thus, \(17a = 14\).
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is: