
Consider a trapezium ABCD with AB | |CD and BC = AD.
Draw AM ∠CD and BN ∠CD.
In ∆AMD and ∆BNC,
AD = BC (Given)
∠AMD =∠BNC (By construction, each is 90°)
AM = BM (Perpendicular distance between two parallel lines is same)
∠∆AMD ∠∆BNC (RHS congruence rule)
∠ADC = ∠BCD (CPCT) ... (1)
∠BAD and ∠ADC are on the same side of transversal AD.
∠BAD + ∠ADC = 180° ... (2)
∠BAD + ∠BCD = 180° [Using equation (1)]
This equation shows that the opposite angles are supplementary.
Therefore, ABCD is a cyclic quadrilateral.

In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.

Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Fig. 9.27). Prove that ∠ACP = ∠ QCD

Section | Number of girls per thousand boys |
|---|---|
Scheduled Caste (SC) | 940 |
Scheduled Tribe (ST) | 970 |
Non-SC/ST | 920 |
Backward districts | 950 |
Non-backward districts | 920 |
Rural | 930 |
Urban | 910 |
(i) Represent the information above by a bar graph.
(ii) In the classroom discuss what conclusions can be arrived at from the graph.
