
Consider a trapezium ABCD with AB | |CD and BC = AD.
Draw AM ∠CD and BN ∠CD.
In ∆AMD and ∆BNC,
AD = BC (Given)
∠AMD =∠BNC (By construction, each is 90°)
AM = BM (Perpendicular distance between two parallel lines is same)
∠∆AMD ∠∆BNC (RHS congruence rule)
∠ADC = ∠BCD (CPCT) ... (1)
∠BAD and ∠ADC are on the same side of transversal AD.
∠BAD + ∠ADC = 180° ... (2)
∠BAD + ∠BCD = 180° [Using equation (1)]
This equation shows that the opposite angles are supplementary.
Therefore, ABCD is a cyclic quadrilateral.
Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Fig. 9.27). Prove that ∠ACP = ∠ QCD


(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
ABCD is a quadrilateral in which AD = BC and ∠ DAB = ∠ CBA (see Fig. 7.17). Prove that
(i) ∆ ABD ≅ ∆ BAC
(ii) BD = AC
(iii) ∠ ABD = ∠ BAC.
