The Earth and the moon experience equal gravitational forces from each other. However, the mass of the Earth is much larger than the mass of the moon. Hence, it accelerates at a rate lesser than the acceleration rate of the moon towards the Earth. For this reason, the Earth does not move towards the moon.
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is: 
| A | B |
|---|---|
| (i) broke out | (a) an attitude of kindness, a readiness to give freely |
| (ii) in accordance with | (b) was not able to tolerate |
| (iii) a helping hand | (c) began suddenly in a violent way |
| (iv) could not stomach | (d) assistance |
| (v) generosity of spirit | (e) persons with power to make decisions |
| (vi) figures of authority | (f) according to a particular rule, principle, or system |
ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig). Show that
(i) ∆ ABE ≅ ∆ ACF
(ii) AB = AC, i.e., ABC is an isosceles triangle.

Section | Number of girls per thousand boys |
|---|---|
Scheduled Caste (SC) | 940 |
Scheduled Tribe (ST) | 970 |
Non-SC/ST | 920 |
Backward districts | 950 |
Non-backward districts | 920 |
Rural | 930 |
Urban | 910 |
(i) Represent the information above by a bar graph.
(ii) In the classroom discuss what conclusions can be arrived at from the graph.