The Correct Answer is: \(108\)
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
The length of the perpendicular drawn from the point to the line is the distance of a point from a line. The shortest difference between a point and a line is the distance between them. To move a point on the line it measures the minimum distance or length required.
The following steps can be used to calculate the distance between two points using the given coordinates:
Note: If the two points are in a 3D plane, we can use the 3D distance formula, d = √(m2 - m1)2 + (n2 - n1)2 + (o2 - o1)2.
Read More: Distance Formula