For a binomial distribution with parameters $n$ and $p$, we have:
\[
\text{Mean} = np = \frac{4}{3}, \text{Variance} = np(1 - p) = \frac{8}{9}
\]
From mean: $np = \dfrac{4}{3} \Rightarrow p = \dfrac{4}{3n}$
Substitute into variance:
\[
np(1 - p) = \frac{8}{9} \Rightarrow \frac{4}{3}(1 - \frac{4}{3n}) = \frac{8}{9}
\]
Simplify:
\[
1 - \frac{4}{3n} = \frac{8}{9}.\frac{3}{4} = \frac{2}{3} \Rightarrow \frac{4}{3n} = 1 - \frac{2}{3} = \frac{1}{3}
\Rightarrow n = 4
\]
Then $p = \dfrac{4}{3.4} = \dfrac{1}{3}$
Now find $P(X = 1)$ in $B(n = 4, p = \frac{1}{3})$:
\[
P(X = 1) = {4 \choose 1} \left(\frac{1}{3}\right)^1 \left(\frac{2}{3}\right)^3 = 4.\frac{1}{3}.\frac{8}{27} = \frac{32}{81} = \boxed{\frac{32}{81}}
\]