We know for a binomial distribution $X \sim B(n, p)$:
\[
np = 2, \quad np(1 - p) = 1 \Rightarrow p = \frac{2}{n}
\]
Substitute into variance:
\[
np(1-p) = 2(1 - \frac{2}{n}) = 1 \Rightarrow \frac{4}{n} = 1 \Rightarrow n = 4, \; p = \frac{1}{2}
\]
So, $X \sim B(4, \frac{1}{2})$.
\[
P(X>1) = 1 - P(X \leq 1) = 1 - [P(0) + P(1)]
\]
Using binomial formula:
\[
P(0) = \binom{4}{0}\left(\frac{1}{2}\right)^4 = \frac{1}{16}, \quad P(1) = \binom{4}{1}\left(\frac{1}{2}\right)^4 = \frac{4}{16}
\]
\[
P(X>1) = 1 - (\frac{1}{16} + \frac{4}{16}) = \frac{11}{16}
\]