The given equation of the line is:
\[ \overrightarrow{r} = 2\hat{i} + \hat{j} + t(3\hat{i} + \hat{j} - 2\hat{k}) \]
Direction vector of the line:
\[ \overrightarrow{d} = 3\hat{i} + \hat{j} - 2\hat{k} \]
The given plane equation is:
\[ 2x + 4y + az = 8 \]
Normal vector of the plane:
\[ \overrightarrow{N} = 2\hat{i} + 4\hat{j} + a\hat{k} \]
Condition for parallelism: The line is parallel to the plane if the direction vector \( \overrightarrow{d} \) is perpendicular to the normal vector \( \overrightarrow{N} \), i.e.,
\[ \overrightarrow{d} \cdot \overrightarrow{N} = 0 \]
Computing the dot product:
\[ (3\hat{i} + \hat{j} - 2\hat{k}) \cdot (2\hat{i} + 4\hat{j} + a\hat{k}) \] \[ = (3 \times 2) + (1 \times 4) + (-2 \times a) \] \[ = 6 + 4 - 2a \]
Setting it to zero:
\[ 6 + 4 - 2a = 0 \]
Solving for \( a \):
\[ 10 = 2a \] \[ a = 5 \]
Final Answer:
\[ \mathbf{5} \]