The line of intersection of two planes \( \vec{r} \cdot \vec{n_1} = d_1 \) and \( \vec{r} \cdot \vec{n_2} = d_2 \) has a direction vector parallel to \( \vec{n_1} \times \vec{n_2} \).
If the direction ratios of a line are (a,b,c), its direction cosines are \( (\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}) \).
If \( l,m,n \) are direction cosines, \( l = \cos \alpha \), \( m = \cos \beta \), \( n = \cos \gamma \), where \( \alpha, \beta, \gamma \) are angles with positive x,y,z axes respectively.