Question:

If the line $3x - 4y + 5 = 0$ is a tangent to the parabola $y^2 = 4ax,$ then $a$ is equal to

Updated On: Jul 6, 2022
  • $\frac{15}{16}$
  • $\frac{5}{4}$
  • $-\frac{4}{3}$
  • $-\frac{5}{4}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The given line is $y= \frac{3}{4}x+\frac{5}{4} = mx +c$ where $m=\frac{3}{4}, c $ $ = \frac{5}{4} $ $ y= mx+c $ touches $y^{2}= 4ax$ if $c= \frac{a}{m} $ $ \therefore$ the given line touches $y^{2}= 4ax$ if $\frac{5}{4}= \frac{a}{{3}/{4}} $ $ \Rightarrow a=\frac{5}{4}\times\frac{3}{4}$ $ = \frac{15}{16}$
Was this answer helpful?
0
0

Top Questions on Conic sections

View More Questions