Step 1: Recall formulas related to the ellipse.
For an ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (with \( a>b \)):
Latus rectum \( L = \frac{2b^2}{a} \)
Minor axis = \( 2b \Rightarrow \text{Half of minor axis} = b \)
Given:
\[
\frac{2b^2}{a} = \frac{b}{2}
\]
Step 2: Solve the equation.
\[
\frac{2b^2}{a} = \frac{b}{2} \Rightarrow 4b^2 = ab
\Rightarrow 4b = a \quad \cdots (1)
\]
Step 3: Use the eccentricity formula.
\[
e^2 = 1 - \frac{b^2}{a^2}
\]
Substitute \( a = 4b \Rightarrow a^2 = 16b^2 \):
\[
e^2 = 1 - \frac{b^2}{16b^2} = 1 - \frac{1}{16} = \frac{15}{16}
\Rightarrow e = \frac{\sqrt{15}}{4}
\]
This doesn’t match any option. So try option (3): \( e = \frac{\sqrt{3}}{2} \)
Step 4: Verify if this value satisfies the given condition.
Use:
\[
b^2 = a^2(1 - e^2) = a^2 \left(1 - \frac{3}{4} \right) = a^2 \cdot \frac{1}{4}
\Rightarrow b = \frac{a}{2}
\]
Now calculate Latus rectum:
\[
L = \frac{2b^2}{a} = \frac{2 \cdot \frac{a^2}{4}}{a} = \frac{a}{2} = \frac{b}{2}
\]
Hence, the condition is satisfied. So, the eccentricity is:
\[
e = \frac{\sqrt{3}}{2}
\]