If the Laplace transform of $ \int_0^t \frac{((1+2t)^2-1)e^{3t}}{t} dt = \frac{A}{S-3} + \frac{B}{(S-3)^2} + \frac{C}{(S-3)} $ then $3(A+B+C)=$
$$ \mathcal{L}\left\{\int_0^t \frac{((1+2\tau)^2 - 1)e^{3\tau}}{\tau} d\tau\right\} = \frac{A}{s} + \frac{B}{(s-3)^2} + \frac{C}{s-3} $$
Let \( f(\tau) = \frac{((1+2\tau)^2 - 1)e^{3\tau}}{\tau} \).
Expand the numerator: \( ((1+2\tau)^2 - 1) = (1 + 4\tau + 4\tau^2 - 1) = 4\tau + 4\tau^2 \).
So, \( f(\tau) = \frac{(4\tau + 4\tau^2)e^{3\tau}}{\tau} = \frac{4\tau(1+\tau)e^{3\tau}}{\tau} = 4(1+\tau)e^{3\tau} = 4e^{3\tau} + 4\tau e^{3\tau} \), for \( \tau \neq 0 \).
Let \( h(t) = 4e^{3t} + 4te^{3t} \).
The Laplace transform of an integral is given by \( \mathcal{L}\left\{\int_0^t h(\tau) d\tau\right\} = \frac{1}{s} \mathcal{L}\{h(t)\} \).
First, we find the Laplace transform of \( h(t) \):
\( \mathcal{L}\{h(t)\} = \mathcal{L}\{4e^{3t} + 4te^{3t}\} = 4\mathcal{L}\{e^{3t}\} + 4\mathcal{L}\{te^{3t}\} \)
Using standard Laplace transforms:
\( \mathcal{L}\{e^{at}\} = \frac{1}{s-a} \), and \( \mathcal{L}\{t^n e^{at}\} = \frac{n!}{(s-a)^{n+1}} \)
So, \( \mathcal{L}\{e^{3t}\} = \frac{1}{s-3} \), \( \mathcal{L}\{te^{3t}\} = \frac{1}{(s-3)^2} \)
Hence, \( \mathcal{L}\{h(t)\} = \frac{4}{s-3} + \frac{4}{(s-3)^2} \)
Therefore, \( \mathcal{L}\left\{\int_0^t h(\tau) d\tau\right\} = \frac{1}{s} \left(\frac{4}{s-3} + \frac{4}{(s-3)^2}\right) = \frac{4}{s(s-3)} + \frac{4}{s(s-3)^2} \)
We are given: \( \frac{A}{s} + \frac{B}{(s-3)^2} + \frac{C}{s-3} \)
So, \( \frac{4}{s(s-3)} + \frac{4}{s(s-3)^2} = \frac{A}{s} + \frac{B}{(s-3)^2} + \frac{C}{s-3} \)
Combine the terms on the left-hand side:
\( \frac{4(s-3) + 4}{s(s-3)^2} = \frac{4s - 12 + 4}{s(s-3)^2} = \frac{4s - 8}{s(s-3)^2} \)
Now do partial fraction decomposition:
\( \frac{4s - 8}{s(s-3)^2} = \frac{A}{s} + \frac{B}{(s-3)^2} + \frac{C}{s-3} \)
Multiply both sides by \( s(s-3)^2 \):
\( 4s - 8 = A(s-3)^2 + Bs + Cs(s-3) \)
Set \( s = 0 \):
\( -8 = 9A \Rightarrow A = -\frac{8}{9} \)
Set \( s = 3 \):
\( 4 = 3B \Rightarrow B = \frac{4}{3} \)
Expand:
\( 4s - 8 = A(s^2 - 6s + 9) + Bs + C(s^2 - 3s) = (A+C)s^2 + (-6A + B - 3C)s + 9A \)
Comparing coefficients: \( A + C = 0 \Rightarrow C = \frac{8}{9} \)
Final coefficients:
\( A = -\frac{8}{9}, \quad B = \frac{4}{3}, \quad C = \frac{8}{9} \)
Find \( 3(A + B + C) \):
\( A + B + C = -\frac{8}{9} + \frac{4}{3} + \frac{8}{9} = \frac{4}{3} \)
So, \( 3(A + B + C) = 3 \times \frac{4}{3} = 4 \)
The final answer is: \( \boxed{4} \)
When the enable data input \( D = 1 \), select inputs \( S_1 = S_0 = 0 \) in the 1×4 Demultiplexer, then the outputs \( Y_0, Y_1, Y_2, Y_3 \) are
The \( Z \) parameter \( Z_{21} \) of the following circuit is
The \( h \) parameters of the following circuit is
For an input voltage \( v = 10 \sin 1000t \), the Thevenin's impedance at the terminals X and Y for the following circuit is