For two interfering waves with intensities $I_1$ and $I_2$,
the maximum intensity is $I_{{max}} = (\sqrt{I_1} + \sqrt{I_2})^2$
and the minimum intensity is $I_{{min}} = (\sqrt{I_1} - \sqrt{I_2})^2$.
Given: $I_1 = I$, $I_2 = 4I$.
So, $\sqrt{I_1} = \sqrt{I}$, $\sqrt{I_2} = \sqrt{4I} = 2\sqrt{I}$.
Maximum intensity: $I_{{max}} = (\sqrt{I} + 2\sqrt{I})^2 = (3\sqrt{I})^2 = 9I$.
Minimum intensity: $I_{{min}} = (\sqrt{I} - 2\sqrt{I})^2 = (-\sqrt{I})^2 = I$.
Thus, $I_{{max}}, I_{{min}} = 9I, I$.
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below: