For two interfering waves with intensities $I_1$ and $I_2$,
the maximum intensity is $I_{{max}} = (\sqrt{I_1} + \sqrt{I_2})^2$
and the minimum intensity is $I_{{min}} = (\sqrt{I_1} - \sqrt{I_2})^2$.
Given: $I_1 = I$, $I_2 = 4I$.
So, $\sqrt{I_1} = \sqrt{I}$, $\sqrt{I_2} = \sqrt{4I} = 2\sqrt{I}$.
Maximum intensity: $I_{{max}} = (\sqrt{I} + 2\sqrt{I})^2 = (3\sqrt{I})^2 = 9I$.
Minimum intensity: $I_{{min}} = (\sqrt{I} - 2\sqrt{I})^2 = (-\sqrt{I})^2 = I$.
Thus, $I_{{max}}, I_{{min}} = 9I, I$.
The strain-stress plot for materials A, B, C and D is shown in the figure. Which material has the largest Young's modulus? 