For \( f(z) \) to be analytic, it must satisfy the Cauchy-Riemann equations:
\( \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \)
Solving these equations for the given function, the values of \( a, b, c, \) and \( d \) are found as \( a = 2, b = -1, c = -1, \) and \( d = 2 \).
\(1\,\text{g}\) of \( \mathrm{AB_2} \) is dissolved in \(50\,\text{g}\) of a solvent such that \( \Delta T_f = 0.689\,\text{K} \). When \(1\,\text{g}\) of \( \mathrm{AB} \) is dissolved in \(50\,\text{g}\) of the same solvent, \( \Delta T_f = 1.176\,\text{K} \). Find the molar mass of \( \mathrm{AB_2} \). Given \( K_f = 5\,\text{K kg mol}^{-1} \). \((\textit{Report to nearest integer.})\) Both \( \mathrm{AB_2} \) and \( \mathrm{AB} \) are non-electrolytes.