\( f(x) = \frac{\sin 3x + \alpha \sin x - \beta \cos 3x}{x^3} \) is continuous at \( x = 0 \).
\[ \lim_{x \to 0} \frac{3x - \left(\frac{3x^3}{3}\right) + \dots + \alpha \left(\frac{x - \frac{x^3}{3}}{3}\right) - \beta \left(1 - \frac{(3x)^2}{2} \dots \right)}{x^3} = f(0) \]
Continuing with the limit:
\[ \lim_{x \to 0} \frac{-\beta + x(3 + \alpha) + \frac{9 \beta x^2}{2} + \left(-\frac{27}{3} + \frac{\alpha}{3}\right)x^3 \dots}{x^3} = f(0) \]
For existence:
\[ \beta = 0, \quad 3 + \alpha = 0, \quad -\frac{27}{3} + \frac{\alpha}{3} = f(0) \]
Calculating:
\[ \alpha = -3, \quad -\frac{27}{6} = -\frac{3}{6} = f(0) \]
\[ f(0) = \frac{-27 + 3}{6} = -4 \]
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.