\( f(x) = \frac{\sin 3x + \alpha \sin x - \beta \cos 3x}{x^3} \) is continuous at \( x = 0 \).
\[ \lim_{x \to 0} \frac{3x - \left(\frac{3x^3}{3}\right) + \dots + \alpha \left(\frac{x - \frac{x^3}{3}}{3}\right) - \beta \left(1 - \frac{(3x)^2}{2} \dots \right)}{x^3} = f(0) \]
Continuing with the limit:
\[ \lim_{x \to 0} \frac{-\beta + x(3 + \alpha) + \frac{9 \beta x^2}{2} + \left(-\frac{27}{3} + \frac{\alpha}{3}\right)x^3 \dots}{x^3} = f(0) \]
For existence:
\[ \beta = 0, \quad 3 + \alpha = 0, \quad -\frac{27}{3} + \frac{\alpha}{3} = f(0) \]
Calculating:
\[ \alpha = -3, \quad -\frac{27}{6} = -\frac{3}{6} = f(0) \]
\[ f(0) = \frac{-27 + 3}{6} = -4 \]
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
| (B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
| (C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
| (D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 