\( f(x) = \frac{\sin 3x + \alpha \sin x - \beta \cos 3x}{x^3} \) is continuous at \( x = 0 \).
\[ \lim_{x \to 0} \frac{3x - \left(\frac{3x^3}{3}\right) + \dots + \alpha \left(\frac{x - \frac{x^3}{3}}{3}\right) - \beta \left(1 - \frac{(3x)^2}{2} \dots \right)}{x^3} = f(0) \]
Continuing with the limit:
\[ \lim_{x \to 0} \frac{-\beta + x(3 + \alpha) + \frac{9 \beta x^2}{2} + \left(-\frac{27}{3} + \frac{\alpha}{3}\right)x^3 \dots}{x^3} = f(0) \]
For existence:
\[ \beta = 0, \quad 3 + \alpha = 0, \quad -\frac{27}{3} + \frac{\alpha}{3} = f(0) \]
Calculating:
\[ \alpha = -3, \quad -\frac{27}{6} = -\frac{3}{6} = f(0) \]
\[ f(0) = \frac{-27 + 3}{6} = -4 \]
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.