Step 1: What continuity at x = 0 requires
We are given
\[
f(x)=\frac{\sin(3x)+\alpha\sin x-\beta\cos(3x)}{x^3},\quad x\in\mathbb{R}.
\]
For \(f\) to be continuous at \(x=0\), the limit \(\lim_{x\to 0} f(x)\) must exist and be finite. Since the denominator is \(x^3\), the numerator must have a Taylor expansion about \(x=0\) starting at order \(x^3\) (i.e., the constant, \(x\), and \(x^2\) terms must vanish).
Step 2: Taylor expansions up to the needed order
Use the standard expansions (up to the first nonzero cubic or quadratic terms that can affect the limit):
\[
\sin(3x)=3x-\frac{(3x)^3}{6}+O(x^5)=3x-\frac{27}{6}x^3+O(x^5)=3x-\frac{9}{2}x^3+O(x^5),
\]
\[
\sin x=x-\frac{x^3}{6}+O(x^5),
\]
\[
\cos(3x)=1-\frac{(3x)^2}{2}+O(x^4)=1-\frac{9}{2}x^2+O(x^4).
\]
Therefore, the numerator
\[
N(x)=\sin(3x)+\alpha\sin x-\beta\cos(3x)
\]
expands to
\[
N(x)=\bigl(3x-\tfrac{9}{2}x^3\bigr)+\alpha\bigl(x-\tfrac{x^3}{6}\bigr)-\beta\bigl(1-\tfrac{9}{2}x^2\bigr)+O(x^4).
\]
Step 3: Match coefficients to kill constant, linear, and quadratic terms
Collect terms by powers of \(x\):
• Constant term: \(-\beta\). For continuity, this must be \(0\) \(\Rightarrow\) \(\beta=0\).
• Coefficient of \(x\): \(3+\alpha\). This must be \(0\) \(\Rightarrow\) \(\alpha=-3\).
• Coefficient of \(x^2\): comes only from \(-\beta\bigl(-\tfrac{9}{2}x^2\bigr)=\beta\tfrac{9}{2}x^2\). With \(\beta=0\), it is already \(0\).
Thus, the smallest nonzero term in \(N(x)\) will be the cubic term when \(\alpha=-3,\ \beta=0\).
Step 4: Determine the cubic term and the limit
With \(\alpha=-3,\ \beta=0\), the cubic coefficient in \(N(x)\) is
\[
\underbrace{-\frac{9}{2}}_{\sin(3x)}\;+\;\underbrace{\Bigl(-3\Bigr)\Bigl(-\frac{1}{6}\Bigr)}_{\alpha\sin x}\;=\;-\frac{9}{2}+\frac{1}{2}=-4.
\]
Hence
\[
N(x)=-4\,x^3+O(x^5)\quad\Rightarrow\quad
f(x)=\frac{N(x)}{x^3}\;=\;-4+O(x^2).
\]
Therefore,
\[
\lim_{x\to 0} f(x)=-4.
\]
Continuity at \(x=0\) then forces \(f(0)=\lim_{x\to 0}f(x)=-4\).
Final answer
-4