The equation of the given circle:
\[
x^2 + y^2 - 4x - 6y - 12 = 0
\]
Rewriting in standard form:
\[
(x-2)^2 + (y-3)^2 = 25
\]
The equation of the polar of a point \( (x_0, y_0) \) with respect to a circle \( x^2 + y^2 + Dx + Ey + F = 0 \) is:
\[
Dx_0 + Ey_0 + F + x x_0 + y y_0 = 0
\]
Substituting \( (\alpha, -1) \):
\[
-4\alpha - 6(-1) - 12 + x\alpha - y(-1) = 0
\]
Simplifying:
\[
-4\alpha + 6 - 12 + x\alpha + y = 0
\]
\[
x\alpha + y = 4\alpha - 6
\]
Since \( y = \beta \), equating:
\[
\beta = 4\alpha - 6
\]
Thus,
\[
4(\alpha + \beta) = 4\left(\alpha + (4\alpha - 6) \right)
\]
\[
= 4(5\alpha - 6)
\]
\[
= -6
\]