Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 7\hat{j} + 3\hat{k}$.
Let
$$ L_1 : \vec{r} = (-\hat{i} + 2\hat{j} + \hat{k}) + \lambda \vec{a}, \quad \lambda \in \mathbb{R} $$
and
$$ L_2 : \vec{r} = (\hat{j} + \hat{k}) + \mu \vec{b}, \quad \mu \in \mathbb{R} $$
be two lines. If the line $L_3$ passes through the point of intersection of $L_1$ and $L_2$,
and is parallel to $\vec{a} + \vec{b}$, then $L_3$ passes through the point: