The percent ionic character of a molecule can be calculated using the following formula:
\[
\text{Percent ionic character} = \frac{\mu_{\text{measured}}}{\mu_{\text{ideal}}} \times 100
\]
where:
- \( \mu_{\text{measured}} \) is the measured dipole moment of the molecule,
- \( \mu_{\text{ideal}} \) is the ideal dipole moment assuming complete ionic character.
The ideal dipole moment \( \mu_{\text{ideal}} \) is given by:
\[
\mu_{\text{ideal}} = Q \times r
\]
where:
- \( Q \) is the charge of the electron, \( Q = 1.602 \times 10^{-19} \, \text{C} \),
- \( r \) is the interatomic separation, \( r = 1.41 \, \text{Å} = 1.41 \times 10^{-10} \, \text{m} \).
Substituting the values:
\[
\mu_{\text{ideal}} = 1.602 \times 10^{-19} \times 1.41 \times 10^{-10} = 2.26 \times 10^{-29} \, \text{Cm}
\]
Now, calculate the percent ionic character:
\[
\text{Percent ionic character} = \frac{2.60 \times 10^{-30}}{2.26 \times 10^{-29}} \times 100 = 11.50%
\]
Thus, the correct answer is (c).