Step 1: Understand Resistance Formula.
The resistance ($ R $) of a wire is given by:
\[
R = \rho \frac{L}{A},
\]
where:
$ \rho $ is the resistivity of the material,
$ L $ is the length of the wire,
$ A $ is the cross-sectional area of the wire.
The cross-sectional area ($ A $) of a wire is related to its diameter ($ d $) by:
\[
A = \pi \left( \frac{d}{2} \right)^2 = \frac{\pi d^2}{4}.
\]
Step 2: Analyze the Effect of Tripling the Diameter.
If the diameter is tripled, new diameter = $ 3d $. Then,
\[
A_{\text{new}} = \pi \left( \frac{3d}{2} \right)^2 = \frac{\pi (3d)^2}{4} = \frac{9\pi d^2}{4} = 9A.
\]
Since resistance is inversely proportional to cross-sectional area:
\[
R \propto \frac{1}{A}.
\]
So if $ A $ becomes 9 times, then:
\[
R_{\text{new}} = \frac{R_{\text{original}}}{9}.
\]
Given $ R_{\text{original}} = 1 \, \Omega $, we have:
\[
R_{\text{new}} = \frac{1}{9} \, \Omega.
\]
Step 3: Analyze the Options.
Option (1): $ 9 \, \Omega $ — Incorrect
Option (2): $ \frac{1}{9} \, \Omega $ — Correct
Option (3): $ \frac{1}{3} \, \Omega $ — Incorrect
Option (4): $ 3 \, \Omega $ — Incorrect
Step 4: Final Answer.
\[
\boxed{(2) \quad \frac{1}{9} \, \Omega}
\]