If the curves \(2x = y^2\) and \(2xy = K\) intersect perpendicularly, then we need to find the value of \(K^2\).
First, find the derivatives of each curve.
For \(2x = y^2\), differentiate with respect to x:
\(2 = 2y \frac{dy}{dx}\)
\(\frac{dy}{dx} = \frac{1}{y}\). Let \(m_1 = \frac{1}{y}\).
For \(2xy = K\), differentiate with respect to x:
\(2x\frac{dy}{dx} + 2y = 0\)
\(2x\frac{dy}{dx} = -2y\)
\(\frac{dy}{dx} = -\frac{y}{x}\). Let \(m_2 = -\frac{y}{x}\).
For the curves to intersect perpendicularly, the product of their slopes must be -1:
\(m_1 \cdot m_2 = -1\)
\(\frac{1}{y} \cdot (-\frac{y}{x}) = -1\)
\(-\frac{1}{x} = -1\)
\(x = 1\)
Now, we substitute \(x = 1\) into the equation \(2x = y^2\):
\(2(1) = y^2\)
\(y^2 = 2\)
\(y = \pm \sqrt{2}\)
Next, we substitute \(x = 1\) and \(y = \pm \sqrt{2}\) into the equation \(2xy = K\):
\(2(1)(\pm \sqrt{2}) = K\)
\(K = \pm 2\sqrt{2}\)
Finally, we find \(K^2\):
\(K^2 = (\pm 2\sqrt{2})^2 = 4 \cdot 2 = 8\)
Therefore, the correct option is (D) 8.
Given curves are $ 2x = y^2 $ and $ 2xy = K $.
For $ 2x = y^2 $, differentiating with respect to $ x $, we have:
$$ 2 = 2y \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{1}{y} = m_1 $$
For $ 2xy = K $, differentiating with respect to $ x $, we have:
$$ 2y + 2x \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{y}{x} = m_2 $$
Since the curves intersect perpendicularly, $ m_1 m_2 = -1 $.
$$ \left(\frac{1}{y}\right)\left(-\frac{y}{x}\right) = -1 \implies \frac{1}{x} = 1 \implies x = 1 $$
Since $ 2x = y^2 $, substituting $ x = 1 $:
$$ 2(1) = y^2 \implies y^2 = 2 \implies y = \pm \sqrt{2} $$
Since $ 2xy = K $, substituting $ x = 1 $ and $ y = \pm \sqrt{2} $:
$$ 2(1)(\pm \sqrt{2}) = K \implies K = \pm 2\sqrt{2} $$
Thus:
$$ K^2 = (2\sqrt{2})^2 = 4(2) = 8 $$
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is