82.
Given differential equation:
\[
(2xy^2-y)\,dx + x\,dy = 0
\]
Rewrite:
\[
\frac{dy}{dx} = \frac{y}{x} - 2y^2
\]
This is a Bernoulli equation.
Divide by \(y^2\):
\[
y^{-2}\frac{dy}{dx} - \frac{1}{x}y^{-1} = -2
\]
Let \(v=y^{-1}\), then:
\[
\frac{dv}{dx} + \frac{1}{x}v = 2
\]
Integrating factor:
\[
\text{IF}=x
\]
\[
\frac{d}{dx}(vx)=2x
\Rightarrow vx=x^2+C
\]
\[
\frac{x}{y}=x^2+C
\]
Intersection of \(2x-3y=1\) and \(3x+2y=8\) gives \((2,1)\).
\[
\frac{2}{1}=4+C \Rightarrow C=-2
\]
\[
\frac{x}{y}=x^2-2
\]
At \(x=1\):
\[
y=-1 \Rightarrow |y(1)|=1
\]
\[
\boxed{1}
\]